
libEnsemble: A Library for Managing
Dynamic Ensembles of Calculations

David Bindel Stephen Hudson John-Luke Navarro
Jeffrey Larson Stefan Wild

Argonne National Laboratory

July 14, 2020



What is libEnsemble

I libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

I Developed to expand the class of problems that can benefit from
increased computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 16
.



What is libEnsemble

I libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

I Developed to expand the class of problems that can benefit from
increased computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 16
.



What is libEnsemble

I libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

I Developed to expand the class of problems that can benefit from
increased computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 16
.



What is libEnsemble

I libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

I Developed to expand the class of problems that can benefit from
increased computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 16
.



What is libEnsemble

I libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

I Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

I Developed to expand the class of problems that can benefit from
increased computational concurrency levels

I libEnsemble uses a manager to allocate work to various workers

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 16
.



libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available

3 of 16
.



libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available

3 of 16
.



libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available

3 of 16
.



libEnsemble dependencies
I Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble
I An MPI implementation (e.g., MPICH) built with shared/dynamic

libraries

I mpi4py v2.0.0 or above

I Can also use multiprocessing or TCP for libEnsemble
communications

I Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.

4 of 16
.



libEnsemble dependencies
I Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble
I An MPI implementation (e.g., MPICH) built with shared/dynamic

libraries

I mpi4py v2.0.0 or above

I Can also use multiprocessing or TCP for libEnsemble
communications

I Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.

4 of 16
.



libEnsemble dependencies
I Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble
I An MPI implementation (e.g., MPICH) built with shared/dynamic

libraries

I mpi4py v2.0.0 or above

I Can also use multiprocessing or TCP for libEnsemble
communications

I Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.

4 of 16
.



libEnsemble dependencies
I Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble
I An MPI implementation (e.g., MPICH) built with shared/dynamic

libraries

I mpi4py v2.0.0 or above

I Can also use multiprocessing or TCP for libEnsemble
communications

I Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.

4 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Decide work
and resources

Give work

active
simulation

completed
generation

active
simulation

...

completed
simulation

si
m
ul
at
io
n

w
or
k

simulation
work

5 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures

I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output

I Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

I Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation

I Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations

I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart

I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,
Theta/ALCF)

I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)

I Thousands of concurrent workers

6 of 16
.



Possible user requirements of libEnsemble
I sim_f/gen_f calculations can employ/access parallel resources

I This places requirements on user’s environment and
simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I Simulation/generation checkpoint and restart
I Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,

Theta/ALCF)
I Thousands of concurrent workers

6 of 16
.



OPAL particle accelerator simulations on 1024 Theta
nodes

7 of 16
.



OPAL particle accelerator simulations on 1024 Theta
nodes

7 of 16
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble
templates

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

8 of 16
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble
templates

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

8 of 16
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble
templates

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

8 of 16
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble
templates

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

8 of 16
.



Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work

I Don’t have to write your own kills, just complete libEnsemble
templates

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

8 of 16
.



Why libEnsemble and not. . . ?

Swift: (the parallel scripting language)
I “Can run million programs, thousands at a time, launching

hundreds per second”
I Require writing your generators in Swift’s scripting language
I Difficult to tightly couple generation of inputs and future/active

running simulations

9 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

requestedpoint

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

idle worker

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

idle workersimulation
work

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

active
simulation

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

completed
simulation

persistent
generation

active
simulation

...

completed
simulation

simulation
output

sim
ulation

output

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

idle worker

persistent
generation

active
simulation

...

idle worker

10 of 16
.



libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

idle worker

persistent
generation

active
simulation

...

idle worker

si
m
ul
at
io
n

ou
tp
ut

simulation
work

10 of 16
.



libEnsemble modes: centralized or distributed

11 of 16
.



libEnsemble modes: centralized or distributed

11 of 16
.



Timing libEnsemble overhead
I Time for libEnsemble to sample/evaluation 30×(workers) points

I Tons of system-dependent caveats
I 32 nodes × 36 cores = 1152-1 workers

12 of 16
.



Timing libEnsemble overhead
I Time for libEnsemble to sample/evaluation 30×(workers) points
I Tons of system-dependent caveats

I 32 nodes × 36 cores = 1152-1 workers

12 of 16
.



Timing libEnsemble overhead
I Time for libEnsemble to sample/evaluation 30×(workers) points
I Tons of system-dependent caveats
I 32 nodes × 36 cores = 1152-1 workers

12 of 16
.



Use cases

I A user wants to optimize a function that depends on a simulation
I The simulation is already using parallel resources, but not a large

fraction of some computer
I libEnsemble can coordinate the concurrent evaluation of the

simulation sim_f at various parameter values and gen_f would
return candidate parameter values (possibly after each sim_f output)

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user has a gen_f that produces different meshes to be used within
a sim_f

I Given the sim_f output, gen_f will refine a mesh or produce a new
mesh

I libEnsemble can ensure that the calculated meshes can be used by
multiple simulations without requiring movement of data

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user wants to evaluate a simulation sim_f at parameters sampled
from a set of parameter values

I Many parameter sets will cause the simulation to fail
I libEnsemble can stop unresponsive evaluations, and recover

computational resources for future evaluations
I gen_f can update the sampling after discovering regions where

evaluations of sim_f fail

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user has a simulation sim_f that requires calculating multiple
expensive quantities, some of which depend on other quantities

I libEnsemble can observe intermediate quantities in order to stop
related calculations and preempt future calculations associated with
a poor parameter values

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user wishes to identify multiple local optima for a sim_f
I libEnsemble can use the points from the APOSMM gen_f to

identify optima

Naturally, combinations of use cases is supported as well

13 of 16
.



Use cases

I A user wishes to identify multiple local optima for a sim_f
I libEnsemble can use the points from the APOSMM gen_f to

identify optima

Naturally, combinations of use cases is supported as well

13 of 16
.



Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective

I Derivatives of f may or may not be available

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine

I Possibly have a specialized local optimization method for f

14 of 16
.



Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective

I Derivatives of f may or may not be available

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine

I Possibly have a specialized local optimization method for f

14 of 16
.



Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective

I Derivatives of f may or may not be available

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine

I Possibly have a specialized local optimization method for f

14 of 16
.



Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective

I Derivatives of f may or may not be available

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine

I Possibly have a specialized local optimization method for f

14 of 16
.



APOSMM
Iteration: 0; r_k: Inf

15 of 16
.



APOSMM
Iteration: 1; r_k: 0.743

15 of 16
.



APOSMM
Iteration: 2; r_k: 0.743

15 of 16
.



APOSMM
Iteration: 3; r_k: 0.689

15 of 16
.



APOSMM
Iteration: 4; r_k: 0.643

15 of 16
.



APOSMM
Iteration: 5; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 6; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 7; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 8; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 9; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 10; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 35; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 36; r_k: 0.605

15 of 16
.



APOSMM
Iteration: 37; r_k: 0.589

15 of 16
.



APOSMM
Iteration: 38; r_k: 0.574

15 of 16
.



APOSMM
Iteration: 39; r_k: 0.560

15 of 16
.



APOSMM
Iteration: 40; r_k: 0.548

15 of 16
.



APOSMM
Iteration: 41; r_k: 0.536

15 of 16
.



APOSMM
Iteration: 42; r_k: 0.525

15 of 16
.



APOSMM
Iteration: 43; r_k: 0.515

15 of 16
.



APOSMM
Iteration: 44; r_k: 0.497

15 of 16
.



APOSMM
Iteration: 45; r_k: 0.480

15 of 16
.



Closing Remarks

I We have a growing set of use cases and examples

I Let us know if you have examples you’d like to see

I https://github.com/Libensemble/libensemble

16 of 16
.

https://github.com/Libensemble/libensemble

